Final Exam — Functional Analysis (WBMA033-05)

Tuesday 4 April 2023, 18.15–20.15h

University of Groningen

Instructions

- 1. The use of calculators, books, or notes is not allowed.
- 2. All answers need to be accompanied with an explanation or a calculation: only answering "yes", "no", or "42" is not sufficient.
- 3. If p is the number of marks then the exam grade is G = 1 + p/10.

Problem 1 (10 points)

Recall the following linear space from the lecture notes:

$$\ell^1 = \left\{ x = (x_1, x_2, x_3, \dots) : x_k \in \mathbb{K}, \sum_{k=1}^{\infty} |x_k| < \infty \right\}.$$

We can equip this space with the following norms:

$$||x||_1 = \sum_{k=1}^{\infty} |x_k|$$
 and $||x||_w = \sum_{k=1}^{\infty} e^{-k} |x_k|$.

Show that these norms are *not* equivalent.

Problem 2 (10 + 5 + 5 + 10 = 30 points)

Consider the following linear operator:

$$T: \mathcal{C}([0,1],\mathbb{K}) \to \mathcal{C}([0,1],\mathbb{K}), \quad Tf(x) = f(x/2).$$

On the space $\mathcal{C}([0,1],\mathbb{K})$ we take the norm $||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$.

- (a) Compute the operator norm of T.
- (b) Show that every $\lambda \in (0,1]$ is an eigenvalue of T. Hint: take $f_p(x) = x^p$ with $p \ge 0$.
- (c) Is T compact?
- (d) Let g(x) = x and $|\lambda| > ||T||$. Explicitly compute all functions $f \in \mathcal{C}([0,1], \mathbb{K})$ such that $Tf \lambda f = g$.

Problem 3 (10 + 10 = 20 points)

Let X be a Hilbert space over $\mathbb{K} = \mathbb{C}$ and let $T \in B(X)$. Prove the following statements:

- (a) ker $T^* = (\operatorname{ran} T)^{\perp}$;
- (b) $\ker T^*T = \ker T$.

Turn page for problems 4 and 5!

Problem 4 (5 + 10 = 15 points)

Let X be a Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and let $S: X \to X$ be a linear operator such that

$$\langle Sx,y\rangle = -\langle x,Sy\rangle \quad \text{for all} \quad x,y\in X.$$

For any fixed $y \neq 0$ define the linear map $T_y: X \to \mathbb{K}$ by

$$T_y(x) = \frac{\langle Sx, y \rangle}{\|y\|}.$$

- (a) Show that for all $x \in X$ we have $\sup\{|T_y(x)| : y \neq 0\} < \infty$.
- (b) Prove that S is bounded by applying the Uniform Boundedness Principle.

Problem 5 (15 points)

Let X be a normed linear space and assume that $x, y \in X$ are distinct. Use the Hahn-Banach Theorem to prove that there exists a bounded linear map $f: X \to \mathbb{K}$ such that

$$||f|| = 1$$
 and $f(x) \neq f(y)$.

Hint: consider the 1-dimensional space spanned by z = x - y.

Solution of problem 1 (10 points)

If norms $\|\cdot\|_1$ and $\|\cdot\|_w$ are equivalent, then there exist constants m, M > 0 such that

$$m||x||_w \le ||x||_1 \le M||x||_w$$
 for all $x \in \ell^1$.

(3 points)

For the vector $x^n = (0, \dots, 0, 1, 0, \dots)$, where the 1 is at the *n*-th position, we have

$$me^{-n} \le 1 \le Me^{-n}$$
 for all $n \in \mathbb{N}$.

(4 points)

Letting $n \to \infty$ gives the inequality $0 \le 1 \le 0$ which is clearly false. Therefore, the given norms $\|\cdot\|_1$ and $\|\cdot\|_w$ are not equivalent.

(3 points)

Note: there are other approaches. For example, for $x^n = (0, \dots, 0, e^n, 0, \dots)$ we would have $||x^n||_w = 1$ while $||x^n||_1 = e^n \to \infty$, which again contradicts the inequalities we are supposed to have for equivalent norms.

Solution of problem 2 (10 + 5 + 5 + 10 = 30 points)

(a) Let $f \in \mathcal{C}([0,1],\mathbb{K})$ be arbitrary and note that

$${f(x/2): x \in [0,1]} = {f(x): x \in [0,1/2]} \subset {f(x): x \in [0,1]}.$$

This gives

$$||Tf||_{\infty} = \sup_{x \in [0,1]} |f(x/2)| \le \sup_{x \in [0,1]} |f(x)| = ||f||_{\infty}.$$

(3 points)

We also conclude that for all nonzero $f \in \mathcal{C}([0,1],\mathbb{K})$ we have $||Tf||_{\infty}/||f||_{\infty} \leq 1$. (3 points)

Finally, if we take any constant function f (i.e. f(x) = c for all $x \in [0,1]$) we have that both $||Tf||_{\infty} = |c|$ and $||f||_{\infty} = |c|$ so that $||Tf||_{\infty}/||f||_{\infty} = 1$. We therefore conclude that

$$||T|| = \sup_{f \in \mathcal{C}([0,1],\mathbb{K}), f \neq 0} \frac{||Tf||_{\infty}}{||f||_{\infty}} = 1.$$

(4 points)

(b) For $f_p(x) = x^p$ with $p \ge 0$ we have that

$$Tf_p(x) = \left(\frac{x}{2}\right)^p = \frac{x^p}{2^p}$$
 for all $x \in [0, 1]$,

which means that $Tf_p = \lambda_p f_p$ where $\lambda_p = 1/2^p$. Since $f_p \neq 0$ we have shown that λ_p is an eigenvalue of T.

(4 points)

Observe that the function $p \mapsto 1/2^p$ is a bijection from $[0, \infty)$ onto (0, 1]. Therefore, we have shown that all elements of the interval (0, 1] are eigenvalues of T.

(1 point)

(c) If T were a compact operator, then T would have at most countably many eigenvalues. However, in part (b) we have shown that T has uncountably many eigenvalues. We conclude that T cannot be compact.

(5 points)

(d) There are at least two ways to solve this equation.

Method 1: using inversion by geometric series. Note that

$$T - \lambda = -\lambda \left(I - \frac{T}{\lambda} \right).$$

Since $|\lambda| > ||T||$ we have $||T/\lambda|| < 1$, and since $\mathcal{C}([0,1], \mathbb{K})$ is a Banach space we can use inversion by geometric series:

$$(T-\lambda)^{-1} = -\frac{1}{\lambda} \left(I - \frac{T}{\lambda} \right)^{-1} = -\frac{1}{\lambda} \sum_{k=0}^{\infty} \frac{T^k}{\lambda^k}.$$

(5 points)

The unique solution of the equation $Tf - \lambda f = g$ is given by

$$f = (T - \lambda)^{-1}g = -\frac{1}{\lambda} \sum_{k=0}^{\infty} \frac{1}{\lambda^k} T^k g.$$

Plugging in the function g(x) = x gives

$$f(x) = -\frac{1}{\lambda} \sum_{k=0}^{\infty} \frac{1}{\lambda^k} \cdot \frac{x}{2^k} = -\frac{x}{\lambda(1 - 1/2\lambda)} = \frac{2x}{1 - 2\lambda}.$$

(5 points)

Method 2: ad hoc. Since $|\lambda| > ||T||$ we know that $\lambda \in \rho(T)$ which means that $T - \lambda$ is invertible. In particular, the equation $Tf - \lambda f = g$ has precisely one solution. (4 points)

As an educated guess, assume that the solution f is of the form f(x) = ax for some constant a. Plugging this into the equation gives the equality

$$\frac{ax}{2} - \lambda ax = x$$
 for all $x \in [0, 1]$.

This gives $a = 2/(1-2\lambda)$. (6 points)

Solution of problem 3 (10 + 10 = 20 points)

(a) We have the following equivalences:

$$\begin{split} x \in \ker \, T^* & \Leftrightarrow \ T^*x = 0 \\ & \Leftrightarrow \ \langle T^*x, y \rangle = 0 \quad \text{for all} \quad y \in X \\ & \Leftrightarrow \ \langle x, Ty \rangle = 0 \quad \text{for all} \quad y \in X \\ & \Leftrightarrow \ x \in (\operatorname{ran} T)^{\perp}, \end{split}$$

which shows the desired equality.

(10 points; about 2 points per equivalence)

(b) We have the following equivalences:

$$x \in \ker T^*T \iff T^*Tx = 0$$

 $\Leftrightarrow Tx \in \ker T^*$
 $\Leftrightarrow Tx \in (\operatorname{ran} T)^{\perp}$ by part (a)
 $\Leftrightarrow Tx = 0$,

where the last equivalence is due to the fact that for any subspace $V \subset X$ we have that $V \cap V^{\perp} = \{0\}$. This shows the desired equality.

(10 points; about 2 points per equivalence)

Solution of problem 4 (5 + 10 = 15 points)

(a) Let $x \in X$ be arbitrary. For all nonzero $y \in X$ the Cauchy-Schwarz inequality gives

$$|T_y(x)| = \frac{|\langle Sx, y \rangle|}{\|y\|} \le \frac{\|Sx\| \|y\|}{\|y\|} = \|Sx\|.$$

(4 points)

This implies that $\sup\{|T_y(x)|: y \neq 0\} \leq \|Sx\| < \infty$. (1 point)

(b) Since X is a Hilbert space (and therefore also a Banach space), part (a) implies that we can apply the Uniform Boundedness Principle. This gives the existence of a constant c > 0 such that

$$\sup_{y \neq 0} ||T_y|| \le c.$$

(5 points)

Note that the given property of S also implies that

$$T_y(x) = -\frac{\langle x, Sy \rangle}{\|y\|}.$$

In particular, taking x = Sy/||y|| gives

$$\frac{\|Sy\|^2}{\|y\|^2} = |T_y(Sy/\|y\|)| \le \|T_y\| \frac{\|Sy\|}{\|y\|}$$

(3 points)

Therefore, for all nonzero $y \in X$ we have

$$\frac{\|Sy\|}{\|y\|} \le \|T_y\| \le c$$

which means that S is a bounded operator.

(2 points)

Solution of problem 5 (15 points)

Since $x, y \in X$ are distinct the vector z = x - y is nonzero and thus the space $V = \text{span}\{z\}$ is 1-dimensional. Define the linear map

$$g: V \to \mathbb{K}, \quad g(\lambda z) = \lambda ||z||.$$

Then we have

$$||g|| = \sup_{v \in V, v \neq 0} \frac{|g(v)|}{||v||} = \sup_{\lambda \neq 0} \frac{|g(\lambda z)|}{||\lambda z||} = \sup_{\lambda \neq 0} \frac{|\lambda| |z||}{|\lambda| ||z||} = 1.$$

(10 points)

By the Hahn-Banach theorem there exists a map $f:X\to \mathbb{K}$ such that $f\!\upharpoonright\! V=g$ and $\|f\|=\|g\|=1.$

(3 points)

Note that we have

$$f(x-y) = g(x-y) = g(z) = ||z|| = ||x-y|| \neq 0,$$

This implies that $f(x) \neq f(y)$.

(2 points)